Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.730
Filtrar
1.
ACS Synth Biol ; 13(4): 1077-1084, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38588591

RESUMO

Uremic toxins (UTs) are microbiota-derived metabolites that accelerate the progression of kidney damage in patients with chronic kidney disease (CKD). One of the major UTs involved in CKD progression is p-cresol-sulfate (PCS), derived from dietary l-tyrosine (l-Tyr). Here, we engineered a probiotic strain of Escherichia coli Nissle 1917, to convert l-Tyr to the nontoxic compound p-coumaric acid via tyrosine ammonia lyase (TAL). First, a small metagenomic library was assessed to identify the TAL with the greatest whole-cell activity. Second, accessory genes implicated in the import of l-Tyr and export of PCA were overexpressed to enhance l-Tyr degradation by 106% and 56%, respectively. Last, random mutagenesis coupled to a novel selection and screening strategy was developed that identified a TAL variant with a 25% increase in whole-cell activity. Taken together, the final strain exhibits a 183% improvement over initial whole-cell activity and provides a promising candidate to degrade l-Tyr mediated PCS accumulation.


Assuntos
Escherichia coli , Insuficiência Renal Crônica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Urêmicas , Mutagênese , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
2.
Am J Pathol ; 194(5): 759-771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637109

RESUMO

In patients with chronic kidney disease (CKD), skeletal muscle mass and function are known to occasionally decline. However, the muscle regeneration and differentiation process in uremia has not been extensively studied. In mice with CKD induced by adenine-containing diet, the tibialis anterior muscle injured using a barium chloride injection method recovered poorly as compared to control mice. In the cultured murine skeletal myocytes, stimulation with indoxyl sulfate (IS), a representative uremic toxin, morphologically jeopardized the differentiation, which was counteracted by L-ascorbic acid (L-AsA) treatment. Transcriptome analysis of cultured myocytes identified a set of genes whose expression was down-regulated by IS stimulation but up-regulated by L-AsA treatment. Gene silencing of myomixer, one of the genes in the set, impaired myocyte fusion during differentiation. By contrast, lentiviral overexpression of myomixer compensated for a hypomorphic phenotype caused by IS treatment. The split-luciferase technique demonstrated that IS stimulation negatively affected early myofusion activity that was rescued by L-AsA treatment. Lastly, in mice with CKD compared with control mice, myomixer expression in the muscle tissue in addition to the muscle weight after the injury was reduced, both of which were restored with L-AsA treatment. Collectively, data showed that the uremic milieu impairs the expression of myomixer and impedes the myofusion process. Considering frequent musculoskeletal injuries in uremic patients, defective myocyte fusion followed by delayed muscle damage recovery could underlie their muscle loss and weakness.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Uremia , Humanos , Animais , Camundongos , Sarcopenia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Uremia/complicações , Insuficiência Renal Crônica/metabolismo
3.
Sci Rep ; 14(1): 9070, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643262

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.


Assuntos
Metilaminas , Insuficiência Renal Crônica , Fator de Necrose Tumoral alfa , Humanos , Mediadores da Inflamação , Fibrose , Insuficiência Renal Crônica/metabolismo , Citocinas , Fibroblastos/metabolismo , Inflamação/metabolismo , Colágeno
4.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474744

RESUMO

Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/metabolismo , Fósforo/metabolismo , Vitamina K/uso terapêutico , Alimentos
5.
Pharmacol Res Perspect ; 12(2): e1187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546116

RESUMO

The progression of chronic kidney diseases (CKD) is complex, influenced by a myriad of factors including gut microbiota. While emerging evidence suggests that gut microbiota can have beneficial effects in managing CKD, it is also recognized that dysbiosis may contribute to the progression of CKD and associated uremic complications. Our previous research has demonstrated the efficacy of lanthanum hydroxide in delaying kidney failure and preserving renal function. However, the role of lanthanum hydroxide in modulating gut microbiota in this context remains unclear. In our study, we induced CKD in rats using adenine, leading to gut microbial dysbiosis, kidney pathology, and disturbances in amino acid metabolism. In this adenine-induced CKD model with hyperphosphatemia, treatment with lanthanum hydroxide improved renal function. This improvement was associated with the restoration of gut microbial balance and an increase in urine ammonium metabolism. These results suggest that the therapeutic potential of lanthanum hydroxide in CKD may be partly due to its ability to reshape gut microbiota composition. This study underscores the significance of lanthanum hydroxide in kidney protection, attributing its benefits to the modulation of gut microbiota in a rat model of CKD.


Assuntos
Microbioma Gastrointestinal , Lantânio , Insuficiência Renal Crônica , Ratos , Animais , Disbiose , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Adenina
6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542298

RESUMO

Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.


Assuntos
Podócitos , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo
7.
JCI Insight ; 9(6)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516889

RESUMO

Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Insuficiência Renal Crônica , Humanos , Transcriptoma , Glomérulos Renais/patologia , Glomerulosclerose Segmentar e Focal/patologia , Nefrite Hereditária/patologia , Insuficiência Renal Crônica/metabolismo
8.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430461

RESUMO

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Assuntos
Adenina/análogos & derivados , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Obstrução Ureteral/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
9.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542420

RESUMO

Chronic kidney disease (CKD) represents a major public health burden with increasing prevalence. Current therapies focus on delaying CKD progression, underscoring the need for innovative treatments. This necessitates animal models that accurately reflect human kidney pathologies, particularly for studying potential reversibility and regenerative mechanisms, which are often hindered by the progressive and irreversible nature of most CKD models. In this study, CKD was induced in mice using a 0.2% adenine-enriched diet for 4 weeks, followed by a recovery period of 1 or 2 weeks. The aim was to characterize the impact of adenine feeding on kidney function and injury as well as water and salt homeostasis throughout disease progression and recovery. The adenine diet induced CKD is characterized by impaired renal function, tubular injury, inflammation, and fibrosis. A significant decrease in urine osmolality, coupled with diminished aquaporin-2 (AQP2) expression and membrane targeting, was observed after adenine treatment. Intriguingly, these parameters exhibited a substantial increase after a two-week recovery period. Despite these functional improvements, only partial reversal of inflammation, tubular damage, and fibrosis were observed after the recovery period, indicating that the inclusion of the molecular and structural parameters is needed for a more complete monitoring of kidney status.


Assuntos
Aquaporina 2 , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Aquaporina 2/metabolismo , Água/metabolismo , Adenina/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Inflamação/metabolismo , Fibrose
10.
J Proteomics ; 298: 105144, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38431085

RESUMO

Effective therapies of chronic kidney disease (CKD) are lacking due to the unclear molecular pathogenesis. Previous single omics-studies have described potential molecular regulation mechanism of CKD only at the level of transcription or translation. Therefore, this study generated an integrated transcriptomic and proteomic profile to provide deep insights into the continuous transcription-translation process during CKD. The comprehensive datasets identified 14,948 transcripts and 6423 proteins, 233 up-regulated and 364 down-regulated common differentially expressed genes of transcriptome and proteome were selected to further combined bioinformatics analysis. The obtained results revealed reactive oxygen species (ROS) metabolism and antioxidant system due to imbalance of mitochondria and peroxisomes were significantly repressed in CKD. Overall, this study presents a valuable multi-omics analysis that sheds light on the molecular mechanisms underlying CKD. SIGNIFICANCE: Chronic kidney disease (CKD) is a progressive and irreversible condition that results in abnormal kidney function and structure, and is ranked 18th among the leading causes of death globally, leading to a significant societal burden. Hence, there is an urgent need for research to detect new, sensitive, and specific biomarkers. Omics-based studies offer great potential to identify underlying disease mechanisms, aid in clinical diagnosis, and develop novel treatment strategies for CKD. Previous studies have mainly focused on the regulation of gene expression or protein synthesis in CKD, thereby compelling us to conduct a meticulous analysis of transcriptomic and proteomic data from the UUO mouse model. Here, we have performed a unified analysis of CKD model by integrating transcriptomes and protein suites for the first time. Our study contributes to a deeper understanding of the pathogenesis of CKD and provides a basis for subsequent disease management and drug development.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Transcriptoma , Fosforilação Oxidativa , Proteômica , Peroxissomos/metabolismo , Peroxissomos/patologia , Perfilação da Expressão Gênica/métodos , Insuficiência Renal Crônica/metabolismo , Fibrose , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Rim/metabolismo
11.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437887

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Triterpenos , Obstrução Ureteral , Humanos , Camundongos , Animais , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Nefropatias/metabolismo , Rim , Insuficiência Renal Crônica/metabolismo , Estresse Oxidativo , Fibrose , Obstrução Ureteral/metabolismo
12.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38470493

RESUMO

IKK2/NF-κB pathway-mediated inflammation in vascular smooth muscle cells (VSMCs) has been proposed to be an etiologic factor in medial calcification and stiffness. However, the role of the IKK2/NF-κB pathway in medial calcification remains to be elucidated. In this study, we found that chronic kidney disease (CKD) induces inflammatory pathways through the local activation of the IKK2/NF-κB pathway in VMSCs associated with calcified vascular stiffness. Despite reducing the expression of inflammatory mediators, complete inhibition of the IKK2/NF-κB pathway in vitro and in vivo unexpectedly exacerbated vascular mineralization and stiffness. In contrast, activation of NF-κB by SMC-specific IκBα deficiency attenuated calcified vascular stiffness in CKD. Inhibition of the IKK2/NF-κB pathway induced cell death of VSMCs by reducing anti-cell death gene expression, whereas activation of NF-κB reduced CKD-dependent vascular cell death. In addition, increased calcification of extracellular vesicles through the inhibition of the IKK2/NF-κB pathway induced mineralization of VSMCs, which was significantly reduced by blocking cell death in vitro and in vivo. This study reveals that activation of the IKK2/NF-κB pathway in VSMCs plays a protective role in CKD-dependent calcified vascular stiffness by reducing the release of apoptotic calcifying extracellular vesicles.


Assuntos
Insuficiência Renal Crônica , Rigidez Vascular , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Músculo Liso Vascular , Insuficiência Renal Crônica/metabolismo
13.
Clin Sci (Lond) ; 138(4): 189-203, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38300615

RESUMO

Sodium bicarbonate (NaHCO3) is commonly utilized as a therapeutic to treat metabolic acidosis in people with chronic kidney disease (CKD). While increased dietary sodium chloride (NaCl) is known to promote volume retention and increase blood pressure, the effects of NaHCO3 loading on blood pressure and volume retention in CKD remain unclear. In the present study, we compared the effects of NaCl and NaHCO3 loading on volume retention, blood pressure, and kidney injury in both 2/3 and 5/6 nephrectomy remnant kidney rats, a well-established rodent model of CKD. We tested the hypothesis that NaCl loading promotes greater volume retention and increases in blood pressure than equimolar NaHCO3. Blood pressure was measured 24 h daily using radio telemetry. NaCl and NaHCO3 were administered in drinking water ad libitum or infused via indwelling catheters. Rats were housed in metabolic cages to determine volume retention. Our data indicate that both NaHCO3 and NaCl promote hypertension and volume retention in remnant kidney rats, with salt-sensitivity increasing with greater renal mass reduction. Importantly, while NaHCO3 intake was less pro-hypertensive than equimolar NaCl intake, NaHCO3 was not benign. NaHCO3 loading significantly elevated blood pressure and promoted volume retention in rats with CKD when compared with control rats receiving tap water. Our findings provide important insight into the effects of sodium loading with NaHCO3 in CKD and indicate that NaHCO3 loading in patients with CKD is unlikely to be benign.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Pressão Arterial , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Pressão Sanguínea , Cloreto de Sódio na Dieta/farmacologia
14.
Am J Physiol Renal Physiol ; 326(4): F584-F599, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299214

RESUMO

Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.


Assuntos
Cardiomiopatias , Insuficiência Renal Crônica , Animais , Camundongos , Fator de Crescimento de Fibroblastos 23 , Modelos Animais de Doenças , Insuficiência Renal Crônica/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Biomarcadores , Fosfatos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/complicações
15.
Int J Biochem Cell Biol ; 169: 106549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340950

RESUMO

BACKGROUND: Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-ß1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-ß1/p38-MAPK pathway and its relationship with autophagy. METHODS: A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-ß1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS: Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-ß-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-ß1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS: Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-ß1 and p38-MAPK/smad2/3 pathways.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Rheum , Obstrução Ureteral , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Rheum/metabolismo , Regulação para Baixo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Rim/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fibrose , Autofagia , RNA Mensageiro/metabolismo
16.
Acta Physiol (Oxf) ; 240(3): e14108, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38314444

RESUMO

AIM: Sodium glucose co-transporter-2 (SGLT2) inhibitors stimulate renal excretion of sodium and glucose and exert renal protective effects in patients with (non-)diabetic chronic kidney disease (CKD) and may as well protect against acute kidney injury (AKI). The mechanism behind this kidney protective effect remains unclear. Juxtaglomerular cells of renin lineage (CoRL) have been demonstrated to function as progenitors for multiple adult glomerular cell types in kidney disease. This study assesses the impact of SGLT2 inhibition on the repopulation of glomerular cells by CoRL and examines their phenotypic commitment. METHODS: Experiments were performed in Ren1cre-tdTomato lineage-trace mice. Either 5/6 nephrectomy (5/6NX) modeling CKD or bilateral ischaemia reperfusion injury (bIRI) mimicking AKI was applied, while the SGLT2 inhibitor empagliflozin (10 mg/kg) was administered daily via oral gavage for 14 days. RESULTS: Both 5/6NX and bIRI-induced kidney injury increased the number of glomerular CoRL-derived cells. SGLT2 inhibition improved kidney function after 5/6NX, indicated by decreased blood creatinine and urea levels, but not after bIRI. In line with this, empagliflozin in 5/6NX animals resulted in less glomerulosclerosis, while it did not affect histopathological features in bIRI. Treatment with empagliflozin resulted in an increase in the number of CoRL-derived glomerular cells in both 5/6NX and bIRI conditions. Interestingly, SGLT2 inhibition led to more CoRL-derived podocytes in 5/6NX animals, whereas empagliflozin-treated bIRI mice presented with increased levels of parietal epithelial and mesangial cells derived from CoRL. CONCLUSION: We conclude that SGLT2 inhibition by empagliflozin promotes CoRL-mediated glomerular repopulation with selective CoRL-derived cell types depending on the type of experimental kidney injury. These findings suggest a previously unidentified mechanism that could contribute to the renoprotective effect of SGLT2 inhibitors.


Assuntos
Injúria Renal Aguda , Compostos Benzidrílicos , Glucosídeos , 60598 , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Renina/metabolismo , Transportador 2 de Glucose-Sódio , Insuficiência Renal Crônica/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Glucose , Sódio/metabolismo
17.
Aging (Albany NY) ; 16(3): 2438-2456, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301049

RESUMO

Vascular calcification (VC) is directly related to high mortality in chronic kidney disease (CKD), and cellular apoptosis of vascular smooth muscle cells (VSMCs) is a crucial process in the initiation of VC. Microtubule affinity-regulating kinase 4 (Mark4), known as a serine/threonine protein kinase, can induce cell apoptosis and autophagy by modulating Akt phosphorylation. However, the potential functions and molecular mechanisms of Mark4 in VSMCs apoptosis and calcification need to be further explored. Initially, our data indicated that the mRNA expression of Mark4 was prominently elevated in high phosphorus-stimulated human VSMCs compared with the other members in Marks. Consistently, Mark4 expression was found to be significantly increased in the calcified arteries of both CKD patients and rats. In vitro, silencing Mark4 suppressed apoptosis-specific marker expression by promoting Akt phosphorylation, finally attenuating VSMCs calcification induced by high phosphate. Mechanically, the transcription factor Sp1 was enriched in the Mark4 promoter region and modulated Mark4 transcription. Moreover, SET domain-containing protein 8 (Setd8) was proved to interact with Sp1 and jointly participated in the transcriptional regulation of Mark4. Finally, rescue experiments revealed that Setd8 contributed to VSMCs apoptosis and calcification by modulating Mark4 expression. In conclusion, these findings reveal that Mark4 is transcriptionally activated by Sp1, which is interacted with Setd8, to promote VSMCs calcification through Akt-mediated antiapoptotic effects, suggesting that Mark4 represents a potent and promising therapeutic target for VC in CKD.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Ratos , Apoptose/genética , Células Cultivadas , Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/metabolismo
18.
Sci Rep ; 14(1): 4755, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413739

RESUMO

Evaluation of the metabolome could discover novel biomarkers of disease. To date, characterization of the serum metabolome of client-owned cats with chronic kidney disease (CKD), which shares numerous pathophysiological similarities to human CKD, has not been reported. CKD is a leading cause of feline morbidity and mortality, which can be lessened with early detection and appropriate treatment. Consequently, there is an urgent need for early-CKD biomarkers. The goal of this cross-sectional, prospective study was to characterize the global, non-targeted serum metabolome of cats with early versus late-stage CKD compared to healthy cats. Analysis revealed distinct separation of the serum metabolome between healthy cats, early-stage and late-stage CKD. Differentially abundant lipid and amino acid metabolites were the primary contributors to these differences and included metabolites central to the metabolism of fatty acids, essential amino acids and uremic toxins. Correlation of multiple lipid and amino acid metabolites with clinical metadata important to CKD monitoring and patient treatment (e.g. creatinine, muscle condition score) further illustrates the relevance of exploring these metabolite classes further for their capacity to serve as biomarkers of early CKD detection in both feline and human populations.


Assuntos
Doenças do Gato , Insuficiência Renal Crônica , Humanos , Gatos , Animais , Estudos Prospectivos , Estudos Transversais , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/veterinária , Insuficiência Renal Crônica/metabolismo , Ácidos Graxos , Biomarcadores , Aminoácidos , Doenças do Gato/diagnóstico
19.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357930

RESUMO

Ten percent of the population worldwide suffers from chronic kidney disease (CKD), but the mechanisms driving CKD pathology are incompletely understood. While dysregulated lipid metabolism is one hallmark of CKD, the pathogenesis of cellular lipid accumulation remains unclear. In this issue of the JCI, Mukhi et al. Identify acyl-CoA synthetase short-chain family 2 (ACSS2) as a disease risk gene and demonstrate a role for ACSS2 in de novo lipogenesis (DNL). Notably, genetic or pharmacological inhibition of DNL protected against kidney disease progression in mice. These findings warrant evaluation of DNL inhibition with respect to efficacy and safety in people with CKD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Lipogênese/fisiologia , Insuficiência Renal Crônica/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
20.
Biopharm Drug Dispos ; 45(1): 58-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319316

RESUMO

Renal function is an important factor affecting the pharmacokinetics of vancomycin. The renal function in elderly patients gradually decreases with age. An accurate estimated glomerular filtration rate (GFR) is essential in drug dosing. The study aimed to determine the most appropriate renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients using population pharmacokinetic analysis. Data were obtained retrospectively from elderly patients aged ≥65 years who received vancomycin for infection from September 2016 to January 2022. Renal function was estimated using the Cockcroft-Gault equation (CG), Modification of Diet in Renal Disease equation (MDRD), three Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPIcys-scr , CKD-EPIscr , and CKD-EPIcys ) and two Berlin Initiative Study equations (BIS-1 and BIS-2). The CKD-EPIcys-scr and BIS-2 equations were based on cystatin C (Cys C) and serum creatinine (Scr). The others were based on Cys C or Scr. A nonlinear mixed effects model (NONMEM) was used to develop the population pharmacokinetic model. A total of 471 serum concentrations from 313 elderly patients were used to develop the population pharmacokinetic model. Weight and GFR were identified as significant covariates affecting the pharmacokinetics of vancomycin. Cys C and Scr-based GFR (CKD-EPIcys-scr and BIS-2) yielded significant improvement performance compared with the other equations in model building. The interindividual variability of CL was reduced from 49.4% to 23.6% and 49.4% to 23.7% in CKD-EPIcys-scr and BIS-2 based models, respectively. However, greater interindividual variabilities of CL (from 26.6% to 29.0%) were represented in the other five models which were based on either Cys C or Scr. The GFR estimated by EPIcys-scr and BIS-2 equations and vancomycin CL exhibited a good correlation (r = 0.834 and 0.833). In the external validation with 124 serum concentrations, the predictive performances of the CKD-EPIcys-scr and BIS-2 based models (the mean relative prediction errors were less than 1%, the mean relative absolute prediction errors were about 23%) were also superior to the other five models (the mean relative prediction errors were about 2%, the mean relative absolute prediction errors were greater than 25%) which are based on either Cys C or Scr. In this study, we determined that the equation used to estimate GFR can affect the population pharmacokinetic model fitting result. Population pharmacokinetics model with CKD-EPIcys-scr or BIS-2 can be used to optimize vancomycin dosage in elderly Chinese patients.


Assuntos
Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Vancomicina , Idoso , Humanos , China , Creatinina , Cistatina C , Insuficiência Renal Crônica/metabolismo , Estudos Retrospectivos , Vancomicina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...